Contributing factors for drought in United States forest ecosystems under projected future climates and their uncertainty
نویسندگان
چکیده
Observations of increasing global forest die-off related to drought are leading to more questions about potential increases in drought occurrence, severity, and ecological consequence in the future. Dry soils and warm temperatures interact to affect trees during drought; so understanding shifting risks requires some understanding of changes in both temperature and precipitation. Unfortunately, strong precipitation uncertainties in climate models yield substantial uncertainty in projections of drought occurrence. We argue that disambiguation of drought effects into temperature and precipitation-mediated processes can alleviate some of the implied uncertainty. In particular, the disambiguation can clarify geographic diversity in forest sensitivity to multifarious drivers of drought and mortality, making more specific use of geographically diverse climate projections. Such a framework may provide forest managers with an easier heuristic in discerning geographically diverse adaptation options. Warming temperatures in the future mean three things with respect to drought in forests: (1) droughts, typically already unusually hot periods, will become hotter, (2) the drying capacity of the air, measured as the vapor pressure deficit (VPD) will become greater, and (3) a smaller fraction of precipitation will fall as snow. More hottemperature extremes will be more stressful in a direct way to living tissue, and greater VPD will increase pressure gradients within trees, exacerbating the risk of hydraulic failure. Reduced storage in snowpacks reduces summer water availability in some places. Warmer temperatures do not directly cause drier soils, however. In a hydrologic sense, warmer temperatures do little to cause ‘‘drought” as defined by water balances. Instead, much of the future additional longwave energy flux is expected to cause warming rather than evaporating water. Precipitation variations, in contrast, affect water balances and moisture availability directly; so uncertainties in future precipitation generate uncertainty in drought occurrence and severity projections. Although specific projections in annual and seasonal precipitation are uncertain, changes in inter-storm spacing and precipitation type (snow vs. rain) have greater certainty and may have utility in improving spatial projections of drought as perceived by vegetation, a value not currently captured by simple temperature-driven evaporation projections. This review ties different types of future climate shifts to expected consequences for drought and potential influences on physiology, and then explains sources of uncertainty for consideration in future mortality projections. One intention is to provide guidance on partitioning of uncertainty in projections of forest stresses. Published by Elsevier B.V.
منابع مشابه
On the difference in the net ecosystem exchange of CO2 between deciduous and evergreen forests in the southeastern United States.
The southeastern United States is experiencing a rapid regional increase in the ratio of pine to deciduous forest ecosystems at the same time it is experiencing changes in climate. This study is focused on exploring how these shifts will affect the carbon sink capacity of southeastern US forests, which we show here are among the strongest carbon sinks in the continental United States. Using eig...
متن کاملTemperature as a potent driver of regional forest drought stress and tree mortality
As the climate changes, drought may reduce tree productivity and survival across many forest ecosystems; however, the relative influence of specific climate parameters on forest decline is poorly understood. We derive a forest drought-stress index (FDSI) for the southwestern United States using a comprehensive tree-ring data set representing AD 1000–2007. The FDSI is approximately equally influ...
متن کاملThe roles of hydraulic and carbon stress in a widespread climate-induced forest die-off.
Forest ecosystems store approximately 45% of the carbon found in terrestrial ecosystems, but they are sensitive to climate-induced dieback. Forest die-off constitutes a large uncertainty in projections of climate impacts on terrestrial ecosystems, climate-ecosystem interactions, and carbon-cycle feedbacks. Current understanding of the physiological mechanisms mediating climate-induced forest mo...
متن کاملبـررسی پتـانسیل اثـرات تغییر اقلیـم بر خشکسـالیهای آینـده کشـور با استفـاده از خروجی مـدلهای گـردش عمـومی جـو
A Study of the Potential Impact of Climate Change on the Future Droughts in Iran by Using the Global Circulation Models as Outputs Gholamreza Roshan Assistant Professor in climatology, Department of Geography, Golestan University, Gorgan, Iran Mohammad Saeed Najafi MSc Student in Climatology, Faculty of Geography, Tehran University, Tehran, Iran. Extended Abstract 1- Introductio...
متن کاملTree mortality predicted from drought-induced vascular damage
The projected responses of forest ecosystems to warming and drying associated with twenty-first-century climate change vary widely from resiliency to widespread tree mortality1–3. Current vegetation models lack the ability to account for mortality of overstorey trees during extreme drought owing to uncertainties in mechanisms and thresholds causing mortality4,5. Here we assess the causes of tre...
متن کامل